-
v2.3.0
- 特色模型: - 检测: 轻量级移动端检测模型PP-PicoDet,精度速度达到移动端SOTA - 关键点: 轻量级移动端关键点模型PP-TinyPose - 模型丰富度: - 检测: - 新增Swin-Transformer目标检测模型 - 新增TOOD(Task-aligned One-stage Object Detection)模型 - 新增GFL(Generalized Focal Loss)目标检测模型 - 发布Sniper小目标检测优化方法,支持Faster RCNN及PP-YOLO系列模型 - 发布针对EdgeBoard优化的PP-YOLO-EB模型 - 跟踪 - 发布实时跟踪系统PP-Tracking - 发布FairMot高精度模型、小尺度模型和轻量级模型 - 发布行人、人头和车辆实跟踪垂类模型库,覆盖航拍监控、自动驾驶、密集人群、极小目标等场景 - DeepSORT模型适配PP-YOLO, PP-PicoDet等更多检测器 - 关键点 - 新增Lite HRNet模型 - 预测部署: - YOLOv3系列模型支持NPU预测部署 - FairMot模型C++预测部署打通 - 关键点系列模型C++预测部署打通, Paddle Lite预测部署打通 - 文档: - 新增各系列模型英文文档
-
v2.2.0
- 模型丰富度: - 发布Transformer检测模型:DETR、Deformable DETR、Sparse RCNN - 关键点检测新增Dark模型,发布Dark HRNet模型 - 发布MPII数据集HRNet关键点检测模型 - 发布人头、车辆跟踪垂类模型 - 模型优化: - 旋转框检测模型S2ANet发布Align Conv优化模型,DOTA数据集mAP优化至74.0 - 预测部署 - 主流模型支持batch size>1预测部署,包含YOLOv3,PP-YOLO,Faster RCNN,SSD,TTFNet,FCOS - 新增多目标跟踪模型(JDE, FairMot, DeepSort) Python端预测部署支持,并支持TensorRT预测 - 新增多目标跟踪模型FairMot联合关键点检测模型部署Python端预测部署支持 - 新增关键点检测模型联合PP-YOLO预测部署支持 - 文档: - Windows预测部署文档新增TensorRT版本说明 - FAQ文档更新发布 - 问题修复: - 修复PP-YOLO系列模型训练收敛性问题 - 修复batch size>1时无标签数据训练问题
-
v2.1.0
- 模型丰富度提升: - 发布关键点模型HRNet,HigherHRNet - 发布多目标跟踪模型DeepSort, FairMot, JDE - 框架基础能力: - 支持无标注框训练 - 预测部署: - Paddle Inference YOLOv3系列模型支持batch size>1预测 - 旋转框检测S2ANet模型预测部署打通 - 增加量化模型Benchmark - 增加动态图模型与静态图模型Paddle-Lite demo - 检测模型压缩: - 发布PPYOLO系列模型压缩模型 - 文档: - 更新快速开始,预测部署等教程文档 - 新增ONNX模型导出教程 - 新增移动端部署文档
-
v2.0.0
**说明:** 自2.0版本开始,动态图作为PaddleDetection默认版本,原`dygraph`目录切换为根目录,原静态图实现移动到`static`目录下。 - 动态图模型丰富度提升: - 发布PP-YOLOv2及PP-YOLO tiny模型,PP-YOLOv2 COCO test数据集精度达到49.5%,V100预测速度达到68.9 FPS - 发布旋转框检测模型S2ANet - 发布两阶段实用模型PSS-Det - 发布人脸检测模型Blazeface - 新增基础模块: - 新增SENet,GhostNet,Res2Net骨干网络 - 新增VisualDL训练可视化支持 - 新增单类别精度计算及PR曲线绘制功能 - YOLO系列模型支持NHWC数据格式 - 预测部署: - 发布主要模型的预测benchmark数据 - 适配TensorRT6,支持TensorRT动态尺寸输入,支持TensorRT int8量化预测 - PP-YOLO, YOLOv3, SSD, TTFNet, FCOS, Faster RCNN等7类模型在Linux、Windows、NV Jetson平台下python/cpp/TRT预测部署打通: - 检测模型压缩: - 蒸馏:新增动态图蒸馏支持,并发布YOLOv3-MobileNetV1蒸馏模型 - 联合策略:新增动态图剪裁+蒸馏联合策略压缩方案,并发布YOLOv3-MobileNetV1的剪裁+蒸馏压缩模型 - 问题修复:修复动态图量化模型导出问题 - 文档: - 新增动态图英文文档:包含首页文档,入门使用,快速开始,模型算法、新增数据集等 - 新增动态图中英文安装文档 - 新增动态图RCNN系列和YOLO系列配置文件模板及配置项说明文档
-
v2.0.0-rc0
Release version v2.0.0-rc Release Note: https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0-rc/docs/CHANGELOG.md - 动态图模型丰富度提升: - 优化RCNN模型组网及训练方式,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本) - 新增支持SSDLite,FCOS,TTFNet,SOLOv2系列模型 - 新增行人和车辆垂类目标检测模型 - 新增动态图基础模块: - 新增MobileNetV3,HRNet骨干网络 - 优化RoIAlign计算逻辑,RCNN系列模型精度提升(依赖Paddle develop或2.0.1版本) - 新增支持Synchronized Batch Norm - 新增支持Modulated Deformable Convolution - 预测部署: - 发布动态图python、C++、Serving部署解决方案及文档,支持Faster RCNN,Mask RCNN,YOLOv3,PP-YOLO,SSD,TTFNet,FCOS,SOLOv2等系列模型预测部署 - 动态图预测部署支持TensorRT模式FP32,FP16推理加速 - 检测模型压缩: - 裁剪:新增动态图裁剪支持,并发布YOLOv3-MobileNetV1裁剪模型 - 量化:新增动态图量化支持,并发布YOLOv3-MobileNetV1和YOLOv3-MobileNetV3量化模型 - 文档: - 新增动态图入门教程文档:包含安装说明,快速开始,准备数据,训练/评估/预测流程文档 - 新增动态图进阶教程文档:包含模型压缩、推理部署文档 - 新增动态图模型库文档